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1. Lecture 1
• Evaluation was discussed
• What is classical physics?

• It follows NLM, is macroscopic in nature, etc.

Nothing else was covered in this lecture apart from this.

2. Lecture 2
Here is a summary of the broad history of classical physics -

1 / 6

https://casiowave.github.io


2. Lecture 2 PH2201

In summary, the most important feature was the law of motion, encapsulated by the equation -

𝑚
𝑑2 ⃗𝑟
𝑑𝑡2

= ⃗𝐹 [1]

(assuming that the mass is not time variant). We may also note the fact that that expression for the electromag-
netic force -

⃗𝐹 = 𝑞( ⃗𝐸 + ⃗𝑣 × �⃗�) [2]

which , in the static limit, is

⃗𝐹 = 𝑞 ⃗𝐸 [3]

and the expression for the gravitational force -

⃗𝐹 = 𝑚 ⃗𝑔

⃗𝑔 = −
𝐺𝑀⌃(𝑟)
𝑟2

[4]

Look quite similar.

There were thus two questions that came -
• Why is the speed of light an universal constant?

• This was solved by Albert Einstein with his Special Theory of Relativity.
• Why is there no velocity dependent term here for gravitation - something like a magnetic field compoent?

• This was again resolved by Albert Einstein in his General Theory of Relativity - in which he establishes
that Gravity is essentially just an effect of being in the wrong reference frame.

This is essentially all of classical physics.

3. Lecture 3
4. Lecture 4
5. Lecture 5
6. Lecture 6
7. Lecture 7 (15 Jan 2024)
We begin with the question of determinism.

• How do we measure the position (say, 𝑥0) of a particle?
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7. Lecture 7 (15 Jan 2024) PH2201

Figure 1: Demonstration of how the position of a particle is measured

What we essentially do, is send a photon to the particle and count the time that it takes for the photon to come
back. We then use this information, coupled with the speed of light, to calculate the position of the particle.

But there is a problem with this method.

Light itself has a finite extent, i.e. a wavelength of light stretches over a finite length. When the light reflects
from the particle, there must be a node there at the particle. But the problem arises with the fact that due to
the finite width of the wavelength of light - we do not know which node of the full wavelength is there at the
particle. This is, in general, a basic fault of all sensors - they can not detect the light until a full wavelength of
the light is through.

As a consequence of this, we get the uncertainty in measurement -

Δ𝑥 ∝
𝜆
2

[5]

This is an inherent error in the measurement of the position of the particle. This suggests that the smaller is the
wavelength of the light that we use for the measurement, the lower is the error.

But it turns out that even this gives rise to another problem.
• How do we measure the velocity (say, 𝑣0) of a particle?

We essentially send two light pulses pulses to the particle - each separated by a fixed time interval (say, 𝑡0), and
then measure the time that each takes to come back. From these two measurements of position (say, 𝑥0 and 𝑥0′)
and the fixed time interval between the measurements, we can determine the velocity of the particle.

𝑣0 =
𝑥0 − 𝑥0′

𝑡0
2

[6]

But the problem arises form the fact that the photon itself has some momentum.

𝑝 =
ℎ
𝜆

[7]

Since the photon gets reflected from the particle and comes back, the particle gains some momentum. There is
thus some inherent error in the measurement of the momentum.

ℎ
𝜆
− 𝑝1 = −

ℎ
𝜆
+ 𝑝2

⇒ Δ𝑝 ∝
2ℎ
𝜆

[8]

Now, this suggests that we should use a larger wavelength to reduce the error in momentum measurement (and
hence the measurement of the velocity).

Combining the effects of Equation 5 and Equation 8, we get -

Δ𝑥Δ𝑝 ∝ ℎ [9]
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7. Lecture 7 (15 Jan 2024) PH2201

Which suggests that this particular quantity is independent of the measurement itself. This is often referred to as
the first primitive form of the Heisenberg Uncertainty Principle.

Thus, we may conclude that classical mechanics depends on a condition that cannot be provided.

⇒ 𝑥 and 𝑝 are not good variables to describe the quanta.

7.1. Vector Calculus

Vector Definition 7.1.1

An element of a set, known as a linear vector space is called a vector.

Incomplete lecture

8. Lecture 8 (17 Jan 2024)
We begin by recalling the eigenvalue equation.

Eigenvalue equation Definition 8.1

An equation of the form

𝑶𝜓 = 𝜆𝜓 [10]

is called an eigenvalue equation, given that 𝑶 is an operator and 𝜓 is a vector that it acts upon, called the
eigenvector in this case. 𝜆 is called an eigenvalue the operator.

Maxwell's wave equation Definition 8.2

∇2𝜓 =
1
𝑐2
𝜕2𝜓
𝜕𝑥2

Where we have,

𝜓 → ⃗𝐸, �⃗�

and this has a solution of the general form,

𝜓 = 𝜓(𝑡, ⃗𝑥) = 𝜓0𝑒
𝑖(�⃗�⋅�⃗�−𝜔𝑡) [11]

Which is an EM wave that is travelling with the angular frequency 𝜔 and in the direction of the wave-
vector 𝑘.

Further, this wave-function 𝜓 also describes a quanta of energy, 𝐸 = ℎ𝜈 = ℏ𝜔.

Schroedinger had to formulate a new way to read off the energy of a wave by combining the eigenvalue method
and Planck’s hypothesis. He was of the opinion that we are probably not reading physics in the proper way.

Consider the following action, where we use Equation 11

𝑖ℏ
𝜕𝜓
𝜕𝑡
= (𝑖ℏ)(−𝑖𝜔)𝜓

⇒ 𝑖ℏ
𝜕𝜓
𝜕𝑡
= ℏ𝜔𝜓

⇒ 𝑖ℏ
𝜕𝜓
𝜕𝑡
= 𝐸𝜓 = 𝐻𝜓

This is an eigenvalue equation where the eigenvalue is the energy of the light quanta. Therefore, the operator,
�̂� = 𝑖ℏ 𝜕𝜕𝑡  represents the energy operator - which is usually called the Hamiltonian operator or 𝐻 .
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8. Lecture 8 (17 Jan 2024) PH2201

𝑖ℏ
𝜕𝜓
𝜕𝑡
= 𝐻 [12]

Similarly, we may be able to deduce that the momentum operator for the wave-function is given by,

̂𝑝 = −𝑖ℏ∇⃗ [13]

As we know that 𝑝 = ℎ
𝜆 =

ℎ
2𝜋
2𝜋
𝜆 = ℎ𝑘.

We use this method to invert the question, and use this to derive physics.

8.1. Bohr’s Model
The energy of the electron is given by,

𝐸 =
𝑝2

2𝑚
+ 𝑉

Where 𝑝 is the momentum of the electron, 𝑚 is the mass of the electron, and 𝑉  is the potential at which the
electron is.

Now, the Hamiltonian operator corresponding to the electron is,

𝐻 =
̂𝑝2

2𝑚
+ ̂𝑉 = −

ℏ2

2𝑚
∇2+𝑉 [14]

Like the quanta of light, the electron should also be described by some wave-function, such that the following
holds -

𝑖ℏ
𝜕𝜓
𝜕𝑡
= 𝐻𝜓

8.2. Schroedinger’s Equation

Schroedinger's Equation Definition 8.2.1

𝑖ℏ
𝜕𝜓
𝜕𝑡
= (−

ℏ2

2𝑚
∇2+𝑉)𝜓 = 𝐻𝜓 [15]

Let us assume that this was given to us in a dream. PDEs like this are not easy to solve in general. We will employ
the method of separation of variables to solve this.

8.3. Separation of variables
We assume the intial ansatz of

Ψ( ⃗𝑥, 𝑡) = 𝑇 (𝑡)𝜓( ⃗𝑥)

We apply this to the Schroedinger equation in (1+1) dimensions.

𝑖ℏ
𝜕Ψ
𝜕𝑡
= −

ℏ2

2𝑚
𝜕2Ψ
𝜕𝑥2

+ 𝑉Ψ

Plugging in the ansatz,

⇒
1
𝑇(𝑡)

𝑖ℏ
𝑑𝑇 (𝑡)
𝑑𝑡

=
1
𝜓(𝑥)

[−
ℏ2

2𝑚
𝑑2𝜓(𝑥)
𝑑𝑥2

+ 𝑉 (𝑥)𝜓(𝑥)] = 𝐸 = constant

As,
• The potential is not taken to be a function of time.
• The LHS is a function of time, and the RHS is a function of space only. If this relation is to hold for all space

and time, it has to equate to constant that is neither a function of time, nor space.
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8. Lecture 8 (17 Jan 2024) PH2201

Thus, we arrive at the Time dependent part of the Schroedinger equation,

𝑖ℏ
𝑑𝑇
𝑑𝑡
= 𝐸𝑇 [16]

and the Time independent part of the Schroedinger equation,

−
ℏ2

2𝑚
𝑑2𝜓
𝑑𝑥2

+ 𝑉 (𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥) [17]
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