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1. Introduction
• The course will not be going over KTG in detail at the beginning - rather it will attempt to pick up from where

the Chemical Thermodynamics course left off.
• This course will attempt to link thermodynamics to statistical mechanics.

2. Lecture 1
The goal here will be to find a fundamental thermodynamic relation for ideal gas, which is essentially the
expression of the internal energy of the gas as a function of temperature, volume, and number density / number
of molecules.

2.1. Setting up the requirements

Ideal Gas Equation Definition 2.1.1

𝑝𝑉 = 𝑛𝑅𝑇 [1]

This equation has been derived empirically from Charle’s Law, Boyle’s law, etc.

Internal energy of Ideal Gas Definition 2.1.2

𝑈 =
3
2
𝑛𝑅𝑇 [2]

This equation has been derived from the kinetic theory of gases

It is very important to note here that here we are commiting to using the microscopic picture of the ideal gas
when we use this equation.

We are also going to be using the relation -

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑝𝑑𝑉 + 𝜇𝑑𝑁 [3]
• This equation is essentially a combination of the 1st and the 2nd Laws of Thermodynamics.
• The last term is included to account for the chemical potential of the system.
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Now, as stated earlier, our goal is to find

𝑈 = 𝑈(𝑆, 𝑉 ,𝑁)

⇒ 𝑑𝑈 = (
𝜕𝑈
𝜕𝑆
)
𝑉 ,𝑁

𝑑𝑆 + (
𝜕𝑈
𝜕𝑉
)
𝑆,𝑁
𝑑𝑉 + (

𝜕𝑈
𝜕𝑁

)
𝑆,𝑉
𝑑𝑁 [4]

Comparing this with Equation 2, we get -

𝑇 = (
𝜕𝑈
𝜕𝑆
)
𝑉 ,𝑁

𝑝 = −(
𝜕𝑈
𝜕𝑉
)
𝑆,𝑁

𝜇 = (
𝜕𝑈
𝜕𝑁

)
𝑆,𝑉

[5]

Why are we considering 𝜇𝑑𝑁?
• 𝜇𝑑𝑁  gives us the energy that is taken out or given by taking out ot putting in molecules
• 𝜇 is called the chemical potential.

Why are we expressing the internal energy as the function of these quantities only and not as a fucntion of other
quantities like temperature, pressure, etc? It is because these are easily measurable quantitites.

2.2. The derivation
we will now derive fundamental thermodynamic relation using Equation 1 and Equation 2.

𝑈 =
3
2
𝑛𝑅𝑇 ⇒ 𝑇 =

2𝑈
3𝑛𝑅

Now, we know from Equation 5 that

(
𝜕𝑈
𝜕𝑆
)
𝑉 ,𝑁

= 𝑇 =
2𝑈
3𝑛𝑅

⇒
𝑑𝑈
𝑈
=
2
3
1
𝑛𝑅
𝑑𝑆

Integrating,

ln(𝑈) =
2
3
𝑆
𝑛𝑅

+ 𝑓(𝑉 ,𝑁) [6]

Where 𝑓  is some function that is the constant of the integration.

Now,

𝑝𝑉 = 𝑛𝑅𝑇 ⇒ 𝑝 =
𝑛𝑅𝑇
𝑉

We know from Equation 5 that

(
𝜕𝑈
𝜕𝑉
)
𝑆,𝑁

= −𝑝 = −
𝑛𝑅𝑇
𝑉

Using Equation 2,

(
𝜕𝑈
𝜕𝑉
)
𝑆,𝑁

= −
2
3
𝑈
𝑉 [7]

Differentiating Equation 6 with respect to 𝑉 , we get

2 / 4



2. Lecture 1 PH2202

𝜕
𝜕𝑉
(ln𝑈) =

𝜕
𝜕𝑉
(
2
3
𝑆
𝑛𝑅

+ 𝑓(𝑉 ,𝑁))

⇒
1
𝑈
(
𝜕𝑈
𝜕𝑉
)
𝑆,𝑁

= (
𝜕𝑓
𝜕𝑉
)
𝑆,𝑁

Using Equation 7 here,

−
2
3
𝑈
𝑉
= 𝑈(

𝜕𝑓
𝜕𝑉
)
𝑆,𝑁

⇒ 𝑑𝑓 = −
2
3
𝑑𝑉
𝑉

Integrating,

𝑓 = −
2
3
ln 𝑉 + ln(𝑔(𝑁))

Where 𝑔 is the constant of integration (We may write it as a logarithm because it makes the manipulation easier
later). Therefore we get,

ln 𝑈 =
2
3
𝑆
𝑛𝑅

−
2
3
ln 𝑉 + ln(𝑔(𝑁)) [8]

We arrived at this using only the two equations Equation 1 and Equation 2. But now, we have a problem. The
function of N, 𝑔, needs to be determined. We have exhausted our physical input - both the equations that we had
have been used. What do we do now?

We note the fact that the quantities 𝑉 , 𝑆 and 𝑁  are all extensive in nature - so is the property 𝑈 . This
means that these properties are directly proportional to the amount of mass in the system.

Say we decide to scale the entire system by some constant 𝜆, i.e., 𝑆 → 𝜆𝑆, 𝑉 → 𝜆𝑉 , 𝑁 → 𝜆𝑁 .

Then, from the extensive nature of 𝑈 , we can definitively say that 𝑈 → 𝜆𝑈 .

We exploit this fact to finish our derivation.

First, we rewrite the equation.

𝑈 = 𝑔(𝑁)𝑉 −23𝑒23 𝑆
𝑛𝑅 [9]

Now, we carry out the scaling operation as discussed.

𝑈 = 𝑔(𝜆𝑁)(𝜆𝑉 )−
2
3𝑒23 𝜆𝑆

𝜆𝑛𝑅

⇒ 𝑈 = 𝑔(𝜆𝑁)(𝜆𝑉 )−
2
3𝑒23 𝑆

𝑛𝑅

Here, the LHS needs to be 𝜆𝑈 . This can only be true if,

𝑔(𝑁) = 𝑘𝑁 5
3 [10]

Where 𝑘 is some constant. Combining Equation 10 and Equation 9, we get

𝑈 = 𝑘𝑁(𝑉𝑁 )
−23𝑒23 𝑆

𝑛𝑅

Which is the required relation.

To summarise, we have arrived at this equation using -
• 2 empirical equations
• The principle of extensivity
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Question: Can this be derived from microscopic considerations , without empirical relations? What if
𝑝𝑉 = 𝑛𝑅𝑇  does not hold?

This is the goal of statistical mechanics, which we shall arrive at later in the course.
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